If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+6t-13=0
a = 1; b = 6; c = -13;
Δ = b2-4ac
Δ = 62-4·1·(-13)
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{22}}{2*1}=\frac{-6-2\sqrt{22}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{22}}{2*1}=\frac{-6+2\sqrt{22}}{2} $
| -1-4x=5x-28 | | X-1000=y-(y*0.15) | | 36n(2)=9 | | x+10=2-x | | 4-4x(2)=-296 | | Y=x-1000/0.85 | | 5x+9+3x=86 | | 3(2+x)=x+2 | | 63/8=-2x+3x+7/8 | | -6+3-6x=27 | | 5b(2)-4=41 | | 26=4x-3/5x-8 | | 8k(2)-8=120 | | (9/8)3x+12=1 | | X—y=1 | | 4m(2)-100=0 | | 56=3w+4w | | 7y-1=4y+17 | | 5x−9+x+5=5x+2 | | 2x+3/4+4x=267/4 | | 2x+3+2x-3=3x+5 | | 2.48=t+5.1 | | -5x+4x=-36 | | x+10=2x–30 | | -4x+3=-36 | | -15n-2=-10n+8 | | 6x^2-52x=80 | | 6x2-52x=80 | | 6y-10=90 | | -1x+4x=3x+3=180 | | 10+2x+50=12x+50 | | 3x+x+6-4=2x-10 |